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Abstract: Fermented foods have been used over the centuries in various parts of the world. These
foods are rich in nutrients and are produced naturally using various biological tools like bacteria and
fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation
and storage for a long period of time with desired or enhanced nutritional values. Inflammatory
diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders
that are difficult to treat, and current treatments for these disorders fail due to various adverse effects
of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria
and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of
developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like
kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental
studies. The current review has focused on the effectiveness of various fermented foods or drinks
used over centuries against inflammation, arthritis, and oxidative stress. We also described potential
limitations on the efficacies or usages of these fermented products to provide an overarching picture
of the research field.

Keywords: fermented food; fermented vegetables; inflammation; pain; arthritis

1. Introduction

The chemical breakdown of complex biomolecules into simple molecules by microor-
ganisms is referred to as fermentation. The term “fermented foods” refers to a set of foods
that undergo various forms of chemical breakdowns induced by probiotic microorgan-
isms [1]. Microorganisms consume vulnerable organic material as part of their metabolic
activities, resulting in fermentation. Most fermented foods are made up of a complex
mixture of carbohydrates, proteins, lipids, and other components that are transformed
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by various bacteria and enzymes simultaneously or sequentially. Several final products
of the fermentation process, notably acids and alcohols, are antimicrobial [1]. During
fermentation, bacteria or fungi make energy and extend their number in food ingredients.
Compounds that have been totally degraded by fermentation to CO2 and water have
lost all their energy values. Some health benefits of fermented foods containing probiotic
organisms include enhancing the immune system, reducing lactose intolerance symptoms,
improving intestinal tract health, and lowering the risk of certain cancers. Probiotics fight in-
fections by modifying gut pH, producing antimicrobial chemicals, competing for pathogen
binding and receptor sites as well as available nutrients and growth factors, activating
immunomodulatory cells, and producing lactase, among other things. The fermenting
organisms include Leuconostoc, Streptococcus, Lactobacillus, Enterococcus, Aerococcus, and
Pediococcus spp., and several other fungi [2,3].

The fermentation of edible foods is steeped in ancient cultural practices as a natural,
primitive, but effective, way of preservation. Using starter cultures such as lactic acid
bacteria (LAB), the foods undergo significant biochemical changes, transforming raw
materials into nutritious, flavorsome products that appeal to ethnic palates worldwide [4].
Yeast (Saccharomyces cerevisiae) and molds (Aspergillus sp., Penicillium sp.) are also commonly
used to ferment alcoholic beverages and cheese and leaven bread [5].

In Asia, fermented foods typically involve non-dairy products such as fruits, veg-
etables, fish, and soybeans. Fermented vegetables and soy products take center stage as
‘superfoods’ as communities observe their health benefits beyond the nutritional value of
pre-processed materials. Biologically active peptides derived from fermented products,
including the anti-hypertensive conjugated linoleic acids (CLA), antimicrobial bacteri-
ocins, and anti-carcinogenic sphingolipids, have since been discovered [6]. The functional
anti-inflammatory and immunomodulatory properties of fermented plant foods owe their
activity to the probiotic modulation of gut microbiota and the prebiotic effect from bioactive
polyphenols generated by the fermentation process itself [7–9]. For instance, a mixture of
18 prebiotic vegetables inoculated with Lactobacillus plantarum (Lactiplantibacillus plantarum)
was subjected to metabolomic analysis, and results showed a significant increase in levels of
antioxidative and anti-inflammatory bioactive molecules such as lactate, 3-phennyllactate,
and indole-3-lactate [10].

There is compelling experimental evidence that fermented vegetables or their deriva-
tives, including preserved cabbage such as kimchi and sauerkraut, and soy-based fermented
foods may potentially treat or prevent various inflammatory diseases [11]; however, clinical
studies for many of these foods remain scarce. This section reviews the literature support-
ing the promising anti-inflammatory mechanisms of selected fermented vegetables while
delineating the limitations of application in clinical medicine.

2. Kombucha

Kombucha probably originated from Manchuria and is made by fermentation by a
consortium of several symbiotic bacteria and yeasts [12]. It is a sweet green or black tea
made by fermented cultures of symbiotic microorganisms like osmophilic yeast, Acetobacter
bacteria (and Lactobacillus sp.) over a period of 10–14 days [13–15]. A recent report showed
that Kombucha ready for consumption is composed of bacteria such as Acetobacter musti
and Gluconobacter potus, and yeasts, namely Dekkera bruxelensis, Schizosaccharomyces pombes,
Hanseniaspora valbyensis, Brettanomyces anamalus, Pichia kudriavzevii, Starmerella vitis, and
Saccharomyces cerevisiae [16]. A recent review showed that Kombucha possesses antimicro-
bial properties toward a broad spectrum of bacteria and fungi as its microbiota composition
may lead to producing acetic acid and various polyphenols [17]. Kombucha microbiota and
tea can be used for fermented milk products that have higher food values [18]. Kombucha
tea possesses anticancer, antimicrobial, and hepatoprotective properties [19]. Noticeably,
the chemical composition of Kombucha depends on the ingredients used during its fer-
mentation process, such as white-, green-, black-, and red-tea-derived Kombucha showed
various levels (0.42–0.93 mg/L) of fluoride content; white or red tea produced the lowest
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amount of fluoride that is safe to eat [20]. Live bacteria and other organisms, including yeast
are naturally present in Kombucha. The presence of flavonoids and other polyphenols in
Kombucha inhibits oxidative enzymes and thus exerts anti-inflammatory effects [21]. The
high antioxidant content of Kombuchas derived from oak is mostly related to their phenolic
content and their capacity to reduce the production of nitric oxide, TNF-alpha, and IL-6 by
lipopolysaccharides, demonstrating a significant anti-inflammatory action [22]. Kombucha
consumption also reduced inflammation by increasing polarization of CD4+ T cells (by
induction of IL-4 and TGF-β) and by inhibiting IFN-γ and IL-17 in a study on multiple
sclerosis (an inflammatory disease) in an experimental autoimmune encephalomyelitis
(EAE) in C57BL/6 mice [23]. Another study showed Kombucha prevented cellular immune
function disorder at an early stage of sepsis in mice. Kombucha intake also promoted the
growth of butyrate-producing bacteria in the gut that exert anti-inflammatory effects [24].

3. Fermented Turmeric

Curcuma longa, often known as turmeric, is a member of the Zingiberaceae family and
is widely farmed in India, China, and other Southeast Asian countries [25]. C. longa is
safe for human use as food, and it has long been used in Chinese culture and Ayurvedic
medicine as an anti-inflammatory medication [26]. Turmeric has a yellow-pigmented com-
ponent, which is mostly made up of curcuminoids. Curcumin, the main component of
curcuminoids, is an antioxidant and anti-inflammatory compound that has been shown
to help with osteoarthritis, type 2 diabetes, and dyslipidemia [27,28]. Numerous studies
have demonstrated pharmacological properties and benefits of turmeric, including anti-
Alzheimer activity [29,30], a hypolipidemic effect [31,32], anti-mutagenic activity [33], and
antiprotozoal effects [34]. These are all related to the active ingredient curcumin [25]. The
usefulness of turmeric extract (approximately 1000 mg/day of curcumin) in the treatment
of arthritis is supported by scientific research [27]. Even though arthritis is linked to inflam-
mation and pain, the actual origin of arthritis is multifactorial, and there is no absolute cure
for the underlying reasons. The primary purpose of arthritis therapy is to alleviate joint dis-
comfort caused by inflammation, regular wear and tear, and muscle strains [35]. Analgesics,
steroids, and nonsteroidal anti-inflammatory medications (NSAIDs) are now used to treat
arthritis. They alleviate symptoms such as extreme pain and inflammation [36]. NSAIDs
are cyclooxygenase (COX) inhibitors that reduce inflammation by inhibiting prostaglandin
and thromboxane production [36]. New NSAIDs block COX-2 specifically and are usu-
ally specific to inflammatory cells, lowering the incidence of peptic ulcer [27]. However,
because of insufficient pain alleviation, immunological abnormalities, and dangerous gas-
trointestinal and cardiovascular side effects, their long-term usage is not recommended [37].
As a result, herbal remedies with anti-inflammatory characteristics and few side effects
are recommended for the treatment of arthritis, particularly rheumatoid arthritis and os-
teoarthritis, particularly since several FDA-approved anti-inflammatory medicines have
been withdrawn. The main bioactive element in turmeric is curcumin (diferuloylmethane).
In E. coli lipopolysaccharide (LPS)-induced human monocytic macrophages and L929
fibroblasts, curcumin has been shown to interact with a variety of molecular targets in
inflammation, including inhibiting the production of pro-inflammatory cytokines, tumor
necrosis factor-alpha (TNF-α), and interleukin-1 (IL-1) [25]. It also stopped the production
of nitric oxide and the activation of nuclear factor-kappa B (NF-kB), a gene that controls
inflammation [38,39]. However, curcumin is a lipophilic polyphenol that is nearly insoluble
in water, reducing its systemic bioavailability. Other studies have shown that, although
curcumin has a limited impact on arthritis advancement in the Wistar rat model, microen-
capsulated curcumin successfully prevents arthritis progression, with the illness stabilizing
after 10 days of treatment. It also lowered the amounts of immune cells (neutrophils and
leukocytes), as well as pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6, bringing
them closer to the levels seen in arthritis-free people. Curcumin, in other forms, exhibited a
lesser or no impact on arthritis progression [40]. Depending on the mode of administration,
the same doses of curcumin exhibited a clearly stated beneficial anti-inflammatory impact.
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The microencapsulated curcumin showed the greatest promise for therapy. Microbial
fermentation has been used to improve curcumin levels and pharmacological effects, as
curcumin only makes up about 2–5% of turmeric [25]. The effects of turmeric fermentation
using several types of lactic acid bacteria on its curcumin content and anti-inflammatory
efficacy were investigated. Regardless of the quantity of L. fermentum-fermented turmeric
used, fermentation with Lactobacillus fermentum (Limosilactobacillus fermentum) boosted cur-
cumin concentration by 9.76% while causing modest cytotoxicity in RAW 246.7 cells [25].
The anti-inflammatory effect of fermented turmeric is mediated by a reduction in the c-Jun
N-terminal kinase signal pathway, but not in unfermented turmeric, according to Western
blot studies [25]. Although fermentation has boosted the curcumin content of turmeric,
it is vital to validate the cytotoxicity of Lactobacillus-fermented turmeric. According to
previous studies, the toxicity of unfermented turmeric is proportional to its concentration,
with a high concentration causing a substantial amount of reactive oxygen species (ROS)
in the cells and cell death [41,42]. The outcomes of this study corroborated prior stud-
ies, demonstrating that a large amount of unfermented turmeric reduced the viability of
RAW 264.7 cells [25]. These findings revealed that fermenting turmeric by LAB improves
curcumin content while also enhancing pharmacological action against arthritis.

A study on immunosuppressed rats with fermented turmeric (in camel milk) pro-
duced better immune biomarkers, increased anti-inflammation responses, and antioxidant
activity compared with unfermented turmeric (in camel milk) supplementation [43]. Sim-
ilarly, compared to non-fermented turmeric and turmeric that had been fermented by
other probiotic strains, turmeric that had been fermented by L. johnsonii IDCC 9203 more
effectively suppressed the production of the pro-inflammatory cytokines that were caused
by lipopolysaccharide [44]. Another study shows antioxidant activity using the DPPH
technique, and fermented turmeric demonstrated stronger antioxidative activity than raw
turmeric. After 5 days of fermentation with Bacillus natto, fermented turmeric dramatically
decreased the levels of aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) in contrast to unfermented turmeric. After fermentation, there was a considerable
rise in HDL cholesterol and a significant decrease in LDL cholesterol [45].

4. Fermented Tea

Tea is one of the most consumed beverages in the world. Green tea, white tea, yellow
tea, oolong tea, black (red) tea, and dark tea are the traditional classifications for tea based
on the degree of fermentation. These teas come in a wide range of looks, infusion colors,
tastes, and fragrances. Regardless, they all come from the same Camellia sinensis leaf [46].
Dark tea is the most thoroughly fermented tea. Dark tea is a fermented tea produced by
solid-state fermentation with microorganisms, making it unique among these types [47].
Due to its distinct sensory properties, dark tea is becoming more popular among consumers.
It is also gaining popularity because of its many health benefits, including protection against
hypertension and cardiovascular disease, RA, weight reduction, metabolic syndrome alle-
viation, intestinal management, and changes in gut flora [48–50]. Microbial fermentation is
assumed to be responsible for sensory properties of the dark tea as well as its health advan-
tages. As a consequence of changes in chemical contents during microbial fermentation,
several unique components associated with dark tea quality, such as catechin derivatives,
flavonols, flavones, and their glycosides, phenolic acids, alkaloids, and terpenoids, have
been discovered in recent years [51–53]. Degradation, oxidation, condensation, structural
modification, methylation, and glycosylation have all been associated with changes in
chemical components in dark tea [54–56]. Functional core microorganisms from the genera
Aspergillus, Eurotium, Candida, Bacillus, Pseudomonas, and Brevibacterium, among others, are
associated with these functions [47,48]. A variety of microbial metabolic and enzymatic pro-
cesses have been discovered. The particular events that occur throughout the fermentation
process are, however, still unknown. The color, taste, flavor, and scent of dark tea are due to
oxidized polyphenolic chemicals such as theaflavins (TF) and thearubigins (TR) generated
during fermentation [57]. The antioxidant properties of dark tea are due to the polyphenolic
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components TF, TR, and unoxidized catechins [58]. The antioxidant characteristics of these
components are due to their capacity to scavenge free radicals, limit free radical production,
and chelate transition metal ions [59]. Because of their propensity to form complexes with
metals, TF, which are generated during fermentation and present solely in black tea, have
an antioxidative impact. The conversion of catechins to TF during tea fermentation has no
effect on the antioxidant properties of the tea [60,61]. However, no known mechanisms
exist to explain the links between RA risk and tea use. Tea has anti-inflammatory as well
as antioxidant effects [62]. In two distinct case-control investigations, antioxidants were
shown to have a preventive effect against the development of RA [63–65].

5. Probiotics

Microbes that encourage the development of other microorganisms were first desig-
nated as probiotics [66,67]. They’ve been more accurately characterized in recent years
as mono- or mixed-cultures of live microorganisms that are advantageous to the host,
increasing the qualities of the native microflora, whether supplied to an animal or a person.
Probiotics are defined as food as preparations or nutritional supplements that promote
human and animal health [66,67]. Their job is to get the human microflora back to its
normal form after disruption due to poor diet, sickness, or the process of healing. The
primary goal of ingestion, whether as food or as a medicine, is to improve the microbiota
of the colon [68]. Probiotics are available in the form of capsules, pills, and tablets, as
well as fermented foods [69]. To be evaluated for human usage, a probiotic strain must be
isolated from human microflora, which gives it a high potential for adhesion to normal gas-
trointestinal cell walls. The variant should be safe for the host and not represent a hazard.
Lactobacillus, Pediococcus, Bifidobacterium, Lactococcus, Streptococcus, and Leuconostoc are the
probiotic bacteria most often isolated from fermented foods and animal/human digestive
systems [70,71]. Many effects of probiotics, including the modulation of immunological
systems, are dependent on the kind of probiotic. Certain strains have been demonstrated
to boost the immune response, making them useful for immunocompromised individu-
als [72]. While the cause of RA is unknown, current evidence shows that bacterial dysbiosis
at mucosal regions can contribute to the disease in physiologically vulnerable persons
(Figure 1) [73]. Preclinical studies showed that Lacticaseibacillus casei or L. acidophilus over
a period of 4 weeks prevented the development of arthritis by reducing inflammation
(i.e., reduced proinflammatory cytokines) and oxidative stress. Similarly, intake of these
Lactobacillus species caused increased levels of anti-inflammatory cytokines in the blood-
stream [74]. Noticeably, oxidative stress reduction can also help to reduce RA and bacterial
and viral inflammatory disorders [75]. Studies also show that the consumption of probiotic
food or medications can help the prevention or provide symptomatic relief of dysentery,
diarrhea, and various gastrointestinal disorders [76].

Autoantibodies related to serum in initial RA patients despite medically apparent
synovitis support this notion, suggesting that illness originates outside the joint [77]. People
with early-stage auto-immune provocative RA have a dysbiotic gut microbiota, which may
provoke autoimmune responses in distant locations like the joints. Earlier mice models
showed a relationship between gut microbiota and systemic immunity, as well as a link
between joint provocative stimulation and systemic immunity. Prior probiotic studies
failed to show a significant difference in RA activity when probiotics were used [78–80].
Recently, there has been a greater recognition based on diet for rheumatic illnesses. Eating a
balanced diet and nutrient-enriched foods including fatty acids can introduce antioxidants
that can reduce the risk of illness. [81] Similar results were found in a sample of 60 RA
patients (30 cases and 30 controls). When compared to a placebo, researchers observed
treatment with probiotics was connected to a significant improvement in insulin. Oxidative
stress markers, however, showed no impact. In this example, 29 patients with RA took part
in a single 12-week experiment, which indicated that combining Lactobacillus rhamnosus
(Lacticaseibacillus rhamnosus) GR-1 and L. reuteri RC-14 resulted in a significant rise in
the (HAQ) level in the probiotics groups but did not alleviate RA therapeutically [82,83].
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Probiotic supplementation in RA patients has a general benefit, at least in the near term.
Probiotic foods are a practical strategy to encourage the growth of beneficial bacteria in the
stomach. Probiotics are bacteria and fungi that are alive; prebiotics like oligofructose and
inulin provide nutrients that help the bacterial population in the gut to multiplicate and
thus enhance the activities of probiotics. [83].
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6. Kimchi

One of the most well-recognized fermented vegetables commercially is kimchi—a
traditional side dish consumed in Korea and popular across East Asia. Ancient Korean
literature from 1145 A.D. (“Samkuksaki”) first detailed the dish as brine-fermented veg-
etables in stone jars, and since then many variations had evolved. In modern cuisine,
kimchi consists mainly of Chinese cabbage (Brassica rapa) and radish fermented along
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with seasonings of red pepper, cinnamon, ginger, garlic, scallion, salt-pickled seafood, and
soybean or fish sauce (jeotgal) (Figure 2) [8,84–86].
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The purported health benefits of kimchi are numerous. Patra et al. highlighted the
immense nutraceutical potential of kimchi as a functional food, encompassing antibacterial,
antioxidative, cholesterol-lowering, immunomodulatory, and even neuroprotective prop-
erties [85–89]. Kimchi has also demonstrated potent radical scavenging and antioxidant
activity in vitro, enhancing LLC-PK1 cell viability by protection against lipid peroxidation.
Plausible mechanisms include the regulation of cyclooxygenase-2 (COX-2), inducible nitric
oxide synthase (iNOS), and NF-κB signaling pathways [90]. A bioactive component in
kimchi, 3-(4’-hydroxyl-3’,5’-dimethoxyphenyl) propionic acid (HDMPPA), was also found
to alleviate levels of pro-inflammatory mediators and cytokines. Specifically, BV2 microglial
cells stimulated with lipopolysaccharide (LPS) were ‘rescued’ from tumor necrosis factor-α
(TNF-α), interleukin-1β, and NF-κB activation [91]. Recently, a novel antimicrobial peptide
(YD1) isolated from kimchi was found to upregulate Nrf2 signaling and suppress NF-κB
activation, subsequently depleting the levels of pro-inflammatory cytokines in both cellular
and animal models [92].

The bioactivity against several inflammatory diseases may be contributed by the
probiotic LAB derived from kimchi. Kwon et al. demonstrated evidence in a dermatitis
(inflammatory skin condition) murine model, whereby the LAB strain Lactobacillus sakei
WIKIM30 promoted regulatory T-cell (Treg) differentiation and modified gut microbiota
populations [93]. Intestinal inflammatory conditions treated with microbes from kimchi
were also well-studied, with the intragastric administration of L. paracasei (Lacticaseibacillus
paracasei) LS2 curbing anorexia and promoting viability in dextran sulfate sodium-induced
inflammatory bowel disease (IBD) mice [94]. L. plantarum (Lactiplantibacillus plantarum),

www.biorender.com
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another LAB strain from kimchi, suppressed pro-inflammatory gene TNF-α, IL-6, leptin,
and Ccl2 expression in C57BL/6 mice on a high-fat diet (HFD) [95].

Similarly, the severity of acute colitis in C57BL/6 mice was attenuated by oral supple-
mentation of L. mesenteroides and L. sakei, further cementing the positive anti-inflammatory
effect of kimchi probiotics [96]. Non-lactobacillus kimchi starter strains such as Latilacto-
bacillus sakei WIKIM31 and Limosilactobacillus reuteri EFEL6901 have been proven to enhance
gut barrier functions and decrease nitric oxide production in LPS-induced macrophages,
respectively [97,98]. In addition, the administration of fermented kimchi in a colitic can-
cer model attenuated interleukin inflammasomes, enhanced antioxidative agents, and
conferred cytoprotection, whereas non-fermented kimchi did not [99].

7. Sauerkraut

Sauerkraut preparation dates back to the 4th century B.C. and is one of the most
traditional methods of preserving cabbage. The nutritious fermented vegetable is more
widely consumed in Central and Eastern Europe than Asian kimchi. Instead of mixing
with spices and fish sauce, sauerkraut is produced from shredded fresh white cabbage
(Brassica oleracea L. var) soaked in 2.0–3.0% sodium chloride, initiating the process of
malolactic fermentation. Innately rich in lactic acid and vitamins, the popular dish was
hailed as a health food and remedy for various ailments by ancient civilizations such as the
Romans [8,100,101].

In a 2014 bibliometric analysis by Raak et al., out of 139 publications associating
sauerkraut and human health, only 33 papers reported clinical effects such as anti-carcinoge-
nicity [101]. More recently, a surge of interest in the health benefits of the fermented
vegetable dish resulted in progressive evidence of its anti-inflammatory, antioxidant, and
antimicrobial properties [8,11,102–104]. Probiotic LAB isolated from sauerkraut revealed
that Lactobacillus spp. was the dominant genus, followed by Leuconostoc spp. (33%) [105],
whereas another study isolated strains of Enterobacteriaceae and Lactococcus [106].

The anti-inflammatory properties of sauerkraut LAB were emphasized in a random-
ized, double-blinded pilot study on 34 Norwegian inflammatory bowel syndrome (IBS)
patients. Supplementation with either the pasteurized or non-pasteurized dish for 6 weeks
led to significant gut microbiota composition changes and alleviation of symptoms [102].
Using Escherichia coli-infected Balb-C mice, Zubaidah et al. revealed that sauerkraut fer-
mented with Leuconostoc mesenteroides triggered immunomodulatory activity by enhancing
both the adaptive and innate immune responses [107].

With the Northeastern Chinese sauerkraut (‘suan cai’), Xu et al. discovered exopolysac-
charides that harbored radical scavenging and immunomodulatory activities via the as-
sessment of nitric oxide, IL-6, TNF-α, and reactive oxygen species levels in RAW 264.7
macrophages [103]. This cousin of the European sauerkraut also had a naturally diverse
microbial structure [104], which was reduced in richness through the inoculation of Lacto-
bacillus casei (Lacticaseibacillus casei) 11MZ-5-1 starter cultures, thereby favorably leaving
Lactobacillus strains in the predominant population [108]. In an in vitro model of intestinal
barrier function, Huang and colleagues isolated Weissella cibaria MW01, a probiotic strain of
LAB from Chinese sauerkraut. This strain showed a stronger adherence capacity compared
to L. rhamnosus (Lacticaseibacillus rhamnosus) GG in the Caco-2 cell line, and significantly
decreased LPS-induced inflammation through TNF-α, IL-6, and IL-8 attenuation [109].

Despite the availability of cellular and animal experimental models suggestive of
health benefits from sauerkraut consumption, clinical data on its anti-inflammatory effects
(aside from the Norwegian study [102]) is scarce and evidential value inadequate [100,110],
warranting further investigation.

8. Soy-Based Fermented Foods

Food products from soy (Glycine max), a legume, are a staple in Asian households
and form the basis for various high-protein beverages and dishes. A functional superfood,
soybeans are packed with at least 14 bioactive phytochemicals encompassing phenolics,
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triterpenes, phytic acid, flavonoids, and carotenoids, in addition to isoflavones and dietary
fibers [111] (Figure 3). A large body of evidence underscores the nutraceutical value of
soy, ranging from anticancer, neuroprotective [112], anti-obesity, and conferring protection
against renal, cardiovascular, and gastrointestinal pathology [111,113,114].
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Soy products have sparked interest in recent years as an arsenal against inflammatory
conditions. With the soy-derived anti-inflammatory peptide, lunasin, researchers perfected
bioengineering methods to overexpress the protein, which suppressed nitric oxide, IL-1, and
IL-6 levels [115]. Pan et al. showed in a RAW 264.7 cell inflammation model, the potential
of the soybean peptide QRPR in suppressing interleukin levels and gene expression of
inflammatory signaling pathways PIK3, AKT, and mTOR [113]. Using a rheumatoid
arthritis (RA) albino rat model, El-Ashmawy et al. discovered that subcutaneous injection
of isoflavone-free soy protein isolate (SPI) attenuated levels of RA markers, including
anti-cyclic citrullinated peptide (anti-CCP) antibodies [116].

Clinically, a review of the association between inflammatory bowel diseases and diet
found that supplementation with soy proteins modulated body fat composition, thus lead-
ing to the control of intestinal irritation [117]. In line with this, a recent meta-analysis of ran-
domized control trials (RCTs) examined serum inflammatory markers in postmenopausal
women showed evidence of a correlation between soy protein intake and reduced C-reactive
protein levels [118].

In traditional Asiatic cuisine, soy is fermented and transformed into tempeh (popular
in Indonesia), natto and miso (Japan), douchi (China), doenjang and cheonggukjang (Korea),
and tofu (Asia). Instead of LAB, which is used in the production of sauerkraut and kimchi,
the preparation of fermented soy foods generally begins with the inoculation of specific
fungal strains or Bacillus sp. While tempeh is processed with Rhizopus oligosporus or R.

www.biorender.com
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oryzae, starter cultures for natto include Bacillus natto, and Aspergillus oryzae for both miso
and douche [8,111,119,120]. Recent data from a prospective cohort study of 92,915 Japanese
residents showed that higher consumption of fermented soy is linked to decreased risk of
mortality compared to non-fermented soy [119].

Tempeh, a fermented soybean cake, is exceptionally known for its potent antioxidant
capacity [120] (Figure 3). The product is rich in isoflavones daidzein and genistein (known
as aglycones), which clearly inhibited free-radical scavenging and ferrous ion chelating
activities [121], and these are influenced by the duration of fermentation [122], and microbial
strain selection in starter cultures—Bacillus spp. and Rhizopus spp. [123]. Variations of
the Indonesian tempeh have been developed to enhance antioxidant activity, including a
gamma-aminobutyric acid (GABA)-rich product [124]. A pilot clinical study with a 28-day
tempeh supplementation in 16 healthy women showed improved metabolic indicators and
enhanced gut Bifidobacterium and A. muciniphila levels [125].

Neuroinflammatory conditions may lead to declining cognitive functions typical of
Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. In this respect, Korean fer-
mented soy condiments doenjang, kanjang/ganjang, and cheonggukjang/chungkookjang
have shown the potential to reverse or treat neuroinflammation. Studies suggest that free
isoflavones produced during the fermentation of cooked soybean contribute to this capac-
ity [126]. In an in vitro study of seven indole alkaloids from fermented Korean soy sauce
(kanjang) administered to LPS-stimulated BV2 cells, two inhibited nitric oxide synthase,
COX-2 expression, and the NF-κB pathway, highlighting the anti-neuroinflammatory action
of the metabolites [127]. In addition, the poly-γ-glutamic acid (γ-PGA)-rich chungkookjang
was found to prevent Alzheimer’s disease-induced memory impairment by modulating
brain insulin sensitivity and interplay between the gut, microbiome, and brain [128]. Ko
et al. demonstrated that a traditional fermented soybean paste, doenjang, can ameliorate
neuroinflammatory features in C57BL/6J mice. Mice fed with doenjang-infused high-fat
feed had reduced β-amyloid peptide (Aβ) and neuroinflammatory gene levels, further
reinforcing the protective effect of fermented soy on the aging brain [129].

Several studies concur that fermented soy products may exert anti-inflammatory
effects on various physiological systems. One such product contains nattokinase, a fib-
rinolytic enzyme isolated from natto, Japanese boiled soybeans fermented with Bacillus
subtilis. Nattokinase (NK) is known to exhibit cardioprotective and hematological effects
via its anti-inflammatory and antioxidant tendencies [130]. Jensen et al. (2019) reported in
a randomized, double-blind, placebo-controlled clinical trial that 79 hypertensive subjects
who consumed 100 mg NK per day for 8 weeks showed a decrease in von Willebrand
factor (vWF) levels and diastolic blood pressure [131]. Research on RAW264.7 macrophages
showed significant suppression of LPS-induced Toll-like receptor 4 (TLR4) and NOX-2
activation and downstream MAPK/NF-κB transcriptional pathways. Subsequently, NK-
treated mice were also protected against LPS-induced acute renal trauma, concurring with
cellular experiments [132]. In a massive, 15-year Japanese cohort study, natto intake was
also correlated with decreased cardiovascular disease-associated deaths in adults of both
genders [133].

Aside from naturally derived compounds from fermentation, ImmuBalanceTM, a
proprietary fermented soy product, alleviated airway inflammation in a murine asthmatic
model through abrogation of eosinophilia and Th2 cytokine levels [134]. The administration
of ImmuBalanceTM also significantly inhibited acute and chronic inflammation, features of
chronic kidney disease pathogenesis, in female C57BL/6 mice. This was accompanied by
decreased circulating kidney injury biomarkers [135].

9. Limitations and Adverse Effects

The very nature of vegetable fermentation, including diversity in production meth-
ods and starter culture strains, makes an objective assessment of its health benefits diffi-
cult. Additionally, despite burgeoning evidence favoring beneficial features, including the
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anti-inflammatory effects of fermented vegetables, there are underlying safety concerns
regarding the frequent consumption of these functional foods.

One such concern is the high concentrations of biogenic amines such as tyramine and
histamine. Sauerkraut has been found to harbor significantly elevated levels of tyramine,
which counteracts monoamine oxidase inhibitor (MAOI) action in prescription drugs
for mental health disorders, including depression and anxiety [101]. The relatively high
histamine levels produced during the fermentation of sauerkraut may also be linked
to an increased risk of allergic reactions, including hay fever and false-positive urticarial
reactions in scratch tests. Nonetheless, the levels of biogenic amine by-products are strongly
dependent on the storage duration, conditions, and strains of starter cultures [136].

The fermentation of kimchi requires copious amounts of salt, and this, in addition
to increased nitrite and nitrate levels, may exert detrimental effects on human health if
consumed in large quantities. This postulation is, however, countered by studies indicating
that the salt and nitrate content in the dish, especially in modern preparations, may be
negligible [85]. When kimchi fermentation is improperly done, pathogenic microbial con-
tamination is a safety risk. There had been reports of food poisoning from aerobic bacteria,
coliforms, Escherichia coli, Bacillus cereus, and even parasite eggs as hidden hazards. These
are greatly reduced by thorough cleaning of the ingredients prior to fermentation [137].
Examination of 267 kimchi samples and 187 raw materials using the @RISK software
showed that the probability of foodborne outbreaks in selected food service facilities was
also minimal [138].

10. Conclusions

In summary, fermented vegetables such as kimchi, sauerkraut, fermented soy products,
and beverages such as fermented teas are garnering attention as a source of natural anti-
inflammatory bioactive compounds. These products should be considered functional foods
as they provide both nutritional and therapeutic effects against various inflammatory
chronic disorders. Nonetheless, there is a paucity of clinical and translational data, which
highlights the need for thorough investigation using multicenter, randomized control
clinical trials to systematically evaluate the potential effects of fermented foods.
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